Structured Ultrahigh Dimensional Multiple-Index Models with Efficient Estimation in Computation And Theory
نویسندگان
چکیده
منابع مشابه
Robust Structured Estimation with Single-Index Models
In this paper, we investigate general single-index models (SIMs) in high dimensions. Based on U -statistics, we propose two types of robust estimators for the recovery of model parameters, which can be viewed as generalizations of several existing algorithms for one-bit compressed sensing (1-bit CS). With minimal assumption on noise, the statistical guarantees are established for the generalize...
متن کاملError Variance Estimation in Ultrahigh Dimensional Additive Models
Error variance estimation plays an important role in statistical inference for high dimensional regression models. This paper concerns with error variance estimation in high dimensional sparse additive model. We study the asymptotic behavior of the traditional mean squared errors, the naive estimate of error variance, and show that it may significantly underestimate the error variance due to sp...
متن کاملSupplementary Material to Robust Structured Estimation with Single-Index Models
In this supplementary material, we present the deferred proofs of the results in the main paper. 1. Proof of Claim 1 Statement of Claim 1: Suppose that each element xi of x is sampled i.i.d. from Rademacher distribution, i.e., P(xi = 1) = P(xi = −1) = 0.5. Under model (3) with noise ε = 0, there exists a θ̄ ∈ Sp−1 together with a monotone f̄ , such that supp(θ̄) = supp(θ∗) and yi = f̄(⟨θ̄,xi⟩) for d...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولForward Selection and Estimation in High Dimensional Single Index Models
We propose a new variable selection and estimation technique for high dimensional single index models with unknown monotone smooth link function. Among many predictors, typically, only a small fraction of them have significant impact on prediction. In such a situation, more interpretable models with better prediction accuracy can be obtained by variable selection. In this article, we propose a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistica Sinica
سال: 2023
ISSN: ['1017-0405', '1996-8507']
DOI: https://doi.org/10.5705/ss.202021.0009